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Summary

Static sway- and oscillatory yawing tests with a 1:55 model of the 50.000 DWT tanker
"British Bombardier" are discussed.
The principal purpose of these tests was to determine the coefficients of a non-linear
mathematical model to predict a number of standard manoeuvres, which were earlier
performed with the full-scale ship before. Clarke (1965) describes the results of these full-
scale manoeuvres.
The mathematical model chosen is based on the Abkowitz Taylor-expansion of the
hydrodynamic forces and moments; see Abkowitz (1964). However, there is a principal
difference with respect to the variables involved, which enables a more correct description of
some non-linear phenomena. Comparison of the predicted manoeuvres with the
corresponding full-scale data shows a rather good agreement.
For comparison purposes some experiments have been performed as well with a small model
of the same tanker ( 100=α ). However it is found that scale effects, due to the very low
Reynolds number, have a considerable influence on the hydrodynamic derivatives. Some
interesting additional figures are given showing the contributions of each term of the
mathematical model during a turning circle manoeuvre while also the change of the stability
roots during this manoeuvre is plotted.

1 Introduction

At the Delft Shipbuilding Laboratory
model tests were performed to determine
the coefficients of a non-linear
mathematical model, which describes the
still water manoeuvrability properties of a

ship. Two types of tests are performed.
First the static towing tests with a constant
drift and rudder angle and second
oscillation tests to determine the added
mass effect in the swaying motion and the
hydrodynamic derivatives of the yawing
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motion. The main particulars of both ship
and models are summarised in Table 1.

Table 1   Main Particulars of Ship and
Models

The principal purpose of the tests is to
obtain information on the possibility to
predict the principal manoeuvres of a ship,
using an adequate mathematical model and
model experiments to determine the
coefficients of this model. For comparison
purposes, Clarke (1965) performed full-
scale trials.

Figure 1   Ship Model under Oscillator in
Towing Tank

The model experiments have been
performed at four different initial speed
conditions, corresponding with a constant
propeller power each. Originally the
results of these four sets of tests have been
kept separated, because it was assumed
that some of the non-dimensional
coefficients could change with the Froude
number, based on the initial speed. In that
case a set of coefficients which would be
different for each initial speed would have
been found. Clarke (1965) gives the results
of this tentative analysis.
During the analysis of the experimental
data, it was found that the principal
differences between some of the non-
dimensional coefficients could be
described effectively by considering the
local water velocity near the rudder. In this
way the apparent Froude-effect in these
coefficients rather could be called a
"power-effect" while the differences in the
other coefficients were not considered
significant, in view of both the available
information and the accuracy of the
measurements.
It is not to be expected however, that this
method of describing the phenomena
mentioned above will hold for other ships.
Especially when the Froude number
becomes high e.g. 0.30 or higher, it is not
very likely that there will be no real
Froude effect in some hydrodynamic
derivatives if they are compared with the
corresponding values found at a Froude
number of 0.10 e.g.
Provided a certain mathematical model has
been adopted, there are several methods to
determine the coefficients of such a model
by model tests. The main problem is to
find out how far uncoupling of the three
motions in the horizontal plane is allowed.
Of course, during an actual manoeuvre the
motions are always coupled and even if the
mathematical model contains terms, which
are meant to describe the cross-coupling
effects one is not sure about the way these
effects have to be determined. The most
convenient method might be to perform
free running model tests and find the
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coefficients of the mathematical model by
analysing the data concerning position and
course of a number of representative
manoeuvres. In that case all variables
remain coupled in the natural way. In
general however too less room is available
for these kinds of manoeuvres, so that one
is pressed to find an acceptable alternative.
In this respect the forced horizontal
oscillation test provides an alternative
solution. On the other hand, the problem of
uncoupling the motions as mentioned
above is introduced. Another practical
problem is to choose the right
combinations of oscillator frequencies and
amplitudes. Considering an actual
oscillatory motion, due to the harmonic
motion of the rudder, it is found that the
combinations of frequencies and
amplitudes involved in these motions
cannot easily be simulated by horizontal
oscillation tests. This is because the actual
range of amplitudes is of the magnitude of
one half to many ship lengths. In most
towing tanks sufficient width is not
available in this respect. These problems
are considered in greater detail in by Van
Leeuwen (1969a).
The conclusion is that most horizontal
oscillation tests involve an unnatural
relation of amplitudes and frequencies. In
other words the ratios of velocity and
acceleration amplitudes are quite different
from the actual values. Apparently this is
no problem, because most of the
mathematical models which are now in use
do not contain any cross-coupling terms
between velocities and accelerations. This
does not imply, however, that such cross-
coupling effects could not be introduced, if
the range of ratios of these variables is
extended too far.

Some final remarks on the mathematical
model.
In the course of the years a lot of studies
were devoted to this subject, starting with
Davidson and Schiff (1946), who
described a model based on the linear
equations of motion. This set of equations,

which originally involves three equations,
describing the surging, swaying and
yawing motion, has been used by several
authors, though unfortunately omitting the
surge equation. Abkowitz (1964) has
proposed one of the most extended non-
linear mathematical models. In this model
the hydrodynamic part of the forces is
expanded into a Taylor series of the
variables concerned. This principle is very
useful, particularly if the constants of the
model are to be determined by the analysis
of forced model tests, because all
imaginable hydrodynamic effects in
principle can be described in this way. An
important question involved in this Taylor
expansion is up to what degree it has to be
extended to be sure that the principal non-
linear hydrodynamic effects are described
correctly. On the other hand it is
questioned to what extend it is necessary
to retain a great number of terms in such a
model for a reasonable accurate
description of manoeuvres, even if the
separate hydrodynamic effects involved
can be measured with forced model tests.
In other words it is suggested that, on the
ground that during an actual manoeuvre
the ratios of the variables satisfy just one
relation, it might be possible to describe
the joint effect of a number of terms by
one term only. In this way a much simpler
mathematical model would arise, the
coefficients of which had to be considered
functions of the coefficients of the original
model. Van Leeuwen (1970) described
some simple non-linear models based on
these grounds.
A disadvantage of such simplified
mathematical models is that its coefficients
cannot be determined by uncoupling the
three motions which means that they can
only be derived from free running tests,
either full-scale or model tests. For
practical purposes however, such as
simulation studies and automatic piloting,
these simplified non-linear models can be
applied successfully.
The principle of the mathematical model
used for the present model-tests is, apart
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from some details, the same as has been
used by Abkowitz. The way in which
Abkowitz treats the influence of a change
of the forward speed, however, brings
about that no insight is gained into the
physical background of this influence.
In this paper, the hypothesis is used that if
the motions are similar, regarding
velocities and accelerations, the principal
hydrodynamic forces on the hull are
proportional with the square of the
instantaneous forward speed. For the
forces, which mainly depend on the
effective angle of attack of the rudder,
proportionality with the square of the local
water velocity is assumed.
The general concept of this hypothesis is
confirmed by the model experiments. In
the following chapter this will be
discussed in more detail.

2 Equations of Motion

2.1 Introduction

If we form a mathematical model and we
start from the fact that the hydrodynamic
forces are functions of the velocities and
accelerations involved in a motion, we can
expand these forces, as has been done by
Abkowitz (1964), in a Taylor series of
these velocities and accelerations. On the
ground of considerations of magnitude we
can ignore the terms whose order is higher
than e.g. the third. There are some
objections to this procedure, however.
Considering a term proportional to the
third power of e.g. the angular velocity the
omission of the fourth order terms means
that the contribution of this term,
regardless the forward speed, remains
proportional with the third power of the
angular velocity. From model experiments
it is known that this - and similar terms -
are reversed proportional with the forward
speed. Neglecting this speed dependence
consequently corresponds with
underestimating the non-linear effects

described by these third order terms in the
case of speed reduction. For a speed
reduction of 50 per cent, such a non-linear
effect is underestimated by a factor two.
Another objection, though of less
importance, is that if the separate
velocities are considered as lateral,
forward and angular velocity, the
particular role played by the forward speed
becomes hardly apparent.
In section 2.3, a different basis has been
chosen for the mathematical model, the
hypothesis mentioned in chapter 1 being
used.
The effects of the fourth degree terms,
mentioned above, are involved in the third
degree Taylor expansion of the forces, if
they are considered to be functions of
characteristic variables, describing the
similarity of the motions.
It is emphasised however, that the concept
of this is not new, because also Davidson
and Schiff (1946), Nomoto (1957) and Eda
and Crane (1962) already paid attention to
the importance of these variables. Both
earlier work and the present investigation
justify the adoption of the hypothesis
concerning the forces.

2.2 Components of Hydrodynamic
Forces

The equations of motion describing the
balance of forces and moments during a
still water manoeuvre can be written as
follows (see also Figure 2):

( )

( ) XvrUm
NrI
YrUvm

x

zz

x

=−⋅

=⋅
=+⋅

!

!

!

Equation 1-a,b,c

where Y  represents the component of the
hydrodynamic forces perpendicular to the
ship and N  the corresponding moment,
while X  represents the component of
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these forces acting in longitudinal
direction.

Figure 2   Co-ordinate System and
Definition of Variables

The sum of the hydrodynamic forces can
be divided into three groups:
1. The first group contains the

components, which depend on the
condition of motion of the ship
without propeller and rudder. The
variables involved in this case will be
discussed in section 2.3.

2. The second group contains the forces,
which act on the rudder. They depend
on the effective angle of attack of the
rudder and as this quantity depends
on the ship's condition of motion,
these components will depend on the
variables of the first group as well as
on the rudder angle itself.

3. The third group contains the force
components, which are caused,
among other things, by the change of
circulation around the ship, due to the
rudder deflection. In general, these

components are considered to be the
result of the fact that the sum of the
hydrodynamic forces is not obtained
by the superposition of the forces
acting on the hull and those on the
rudder, which may be approximately
true for the side forces on sailing
yachts.

Concerning the longitudinal force balance,
a fourth group has to be considered, which
involves the forces due to the resistance
and the change of thrust caused by speed
loss during manoeuvring. This group
determines the difference between the
forward speed of the centre of gravity and
the speed of the water near the rudder.

2.3 Hypothesis Concerning the
Hydrodynamic Forces Acting on
the Manoeuvring Ship

The hypothesis mentioned in the preceding
chapter, concerning the first group forces,
is formulated as follows:
   If two similar motions of a certain ship
(or model) are compared, than these
forces will be proportional to the square of
the forward speeds involved, provided
these speeds do not differ too much.
This hypothesis is mainly based on model
experiments, though the results of full-
scale manoeuvres, executed at different
forward speeds, provide an indication for it
as well.
The explanation for the usefulness of this
hypothesis can be derived from the
principal importance of the inertia forces
and further from the small role played by
the generated waves in a certain speed
range.
If comparing the similar motions of a ship
and her model, the wave patterns will only
be similar if the Froude numbers in this
case are equal, due to the constant value of
the acceleration of gravity. On the ground
of the small influence mentioned of the
generated waves in a certain speed-range,
the hypothesis is to be applied in this case
within a restricted range of Froude
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numbers, while the forces are proportional
to the factor 22 LU .
Concerning the forward speed, the upper
limit of the usefulness of the hypothesis
logically follows from the increasing
importance of the waves, when the speed
is higher.
The lower limit, however, cannot be
derived only from the decreasing wave
generation, as this, on the contrary, rather
is a reason to expect its usefulness.
Apparently there are other reasons for this,
the principal of which probably is the
increasing importance of the frictional
forces, and in general, of the viscous
effects, compared to the inertia forces.
The equations of motion of a floating
body, moving in a horizontal plane, can be
written in such a form, that the hypothesis
is expressed by it. According to the
hypothesis the forces, acting on the body,
depend linearly on the force unit

225.0 LUρ , so that the forces, divided by
this unit, can only be functions of non-
dimensional parameters, which describe
the (restricted) similarity of the
instantaneous conditions of motion to be
compared.
Assuming only the velocities (v, r, U) and
the accelerations ( v! , r! , U! ) to play a role
in the equilibrium of forces, the equations
of motion can be written as follows:
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Equation 2-a,b,c

If the principle of the hypothesis is also
applied to the force components of the
second group, then the local similarity is
characterised by the actual angle of attack
of the rudder, while the forces are then
proportional to the square of the local
water velocity.
As the actual angle of attack and the
magnitude and the direction of the local
water velocity, these forces may be
approximated as follows:

( )actR YLUY δρ ⋅= 22

2
1

where RU  is the local water velocity and
*

3
*

21 rpvppact ⋅+⋅+⋅= δδ
with:

U
vv =*    and   

U
rLr ⋅=*

Concerning the components of the third
group, it is assumed that they will mainly
depend on the variables of both the first
and second group. They will partly be
proportional to the square of the forward
speed of the centre of gravity and for the
rest to the square of the local (rudder)
speed.
On this basis the mathematical model can
be build up, considering the three groups
to be functions of the non-dimensional
variables, concerned. The expansion of the
three groups in a third degree Taylor series
leads to a number of terms a part of which
being proportional with the square of the
forward speed, while the remaining terms
will be proportional to the square of the
local rudder speed.

Considering e.g. the linear term in *v , then
the following expression is found:
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The expressions for the other terms will
have similar forms. On this ground the
mathematical model is to be written in the
following form:
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Equation 3-a,b,c

In these equations the components marked
with an asterisk contain the terms
originated from the Taylor expansions of
the first and second group. The dashed
components contain the corresponding
terms of the second and third group. Both
asterisk and dash marked components are
functions of the rudder angle and the five
variables determine the second order
similarity. The longitudinal force
component 3X  describes the difference
between the ship’s straight-line resistance
and the change of thrust due to the speed
reduction.
On the ground of theoretical
considerations and the experience from
earlier investigations a number of
assumptions have been made, which
simplify the expressions for the various
components. Some of these assumptions
have been investigated particularly, while
others are not contradicted by the
measurements.

The assumptions concerned are
summarised as follows:
1. The forward speed U , as a variable of

Equation 3, can be replaced by its
longitudinal component xU .
Consequently, the variables *v  and *r
are defined as xUv /  and xUrL /⋅
respectively, while the unit *ds  is
defined as LdtU x /⋅ .

2. The hydrodynamic lateral forces are
independent of the longitudinal
acceleration, and the hydrodynamic
longitudinal forces are independent of
the sway and yaw accelerations.

3. Non-linear acceleration effects do not
occur in the range of interest.

4. If the ship is on a straight course, the
forces due to a certain rudder
deflection are proportional to the
square or the local rudder speed RU .
(This assumption may be considered
the definition of the quantity RU  for
the present investigations).

5. The influence of the rudder rate on
added mass effects is negligible for
practical purposes.

2.5 Set of Equations of Motion

Executing the Taylor expansions of the
three groups of forces and moments and
applying the assumptions indicated above,
the equations of motion can be written as
follows:
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Equation 4-a
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Equation 4-c

In these equations all variables have been
made non-dimensional with the initial
speed 0U  so that e.g.:
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Some additional remarks concerning these
equations:
a. The side force and moment equations

contain some terms to describe the
asymmetrical behaviour of the ship.
With zero rudder deflection these
terms are ( ) 2'2'* 1 Raa UYuY ++  and

( ) 2'2'* 1 Raa UNuN ++  while the
asymmetrical rudder effectiveness is
described by the terms 2δδδY  and

2δδδN  respectively.
b. The longitudinal force component 3X

is divided into two components, the
first of that describes the balance
between the original thrust and the
straight-line resistance while the
second describes the (linearised)
increment of the thrust during a
manoeuvre.

c. The fourth degree terms, which were
mentioned in the introduction, are due
to the factors ( )'1/1 u+ , which may be

linearised in the range
00.060.0 ' <<− u  to '30.284.0 u⋅− .

d. If the change of speed during a
manoeuvre is larger than the range in
which the hypothesis is valid, than the
star and dash coefficients can be
considered linear functions of the
speed. In that case additional
coefficients as *

vuY  and vuY  should be
added. For the present investigation,
this appeared not necessary however.

3 Execution of Tests

3.1 Measuring Equipment

The principal property of the measuring
equipment is that only harmonic
components of the forces are determined.
For the present investigation only the first
harmonic components were needed. This
determination is achieved by multiplying
the forces by tωsin  and tωcos
respectively, while these products are
integrated during one or more periods of
the oscillation. The non-oscillatory
components of the forces are determined
by integration of the force during a number
of periods.
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Zunderdorp and Buitenhek (1963) give in
a more detailed discussion on the oscillator
and the measuring equipment.
The static drift angle adjustment during the
oscillation tests is achieved by turning the
model with respect to the connecting line
of the oscillator struts (the “pure yawing
line”). This is sketched in Figure 3.

Figure 3   Drift Angle Adjustment of
Oscillator

3.2 Determination of Draught and
Trim

As the model was restrained from heaving
and pitching the draught and trim, as
dependent on the forward speed and the
number of propeller revolutions had to be
determined.
The revolutions adjusted for these tests
were estimated from the available full-
scale data. A change of the rpm did
influence neither the mean draught nor the
trim however. In Table 2 the various
draughts fore and aft for model and ship
are given.
These draughts have been adjusted for the
tests concerned. It is questioned however if
it is correct to restrain the model in vertical
direction during oscillation and other tests.

Table 2  Trim as Function of Speed

A particular investigation might give the
answer, but it is not expected that
undesirable cross-coupling effects would
disturb the side force measurements, due
to the uncoupling of the swaying and
yawing motion. This is also expected with
respect to the rolling motion. As it was not
the purpose of this investigation to find an
answer to this question, it was considered
a useful approximation to adjust the
constant draughts, derived from straight-
line tests and to restrain the model also
from rolling.

3.3 Determination of Resistance and
Propulsion Coefficients

The description of the balance between
longitudinal resistance and the propeller
thrust is partly based on some full-scale of
rpm at 15.5 knots and partly on the
propeller characteristics. From these data
the wake fraction was derived while for
the lower speeds, caused by manoeuvring.
This wake fraction was considered
constant. From the fact that during a
manoeuvre the power does not change, the
increment of thrust and the decrement of
rpm could be calculated using the
propeller characteristics. For comparison
purposes also the full-scale measurements
of these quantities are given in Figure 4
and Figure 5.
Concerning the other initial speeds, 12.4,
9.3 and 6.2 knots, a linear relation between
these speeds and the rpm was adopted (see
Figure 6).
The increase of thrust and the decrease of
the rpm during manoeuvres with these
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initial speeds were determined as this was
done for the 15.5 knots initial speed.

Figure 4   Variation of Thrust with Speed
during Turning Circles at 100 Nominal

RPM at t = 0

Figure 5   Variation of RPM with Speed
during Turning Circles at 100 Nominal

RPM at t = 0

Figure 6   Adopted Initial Speed-RPM
Relation

In Figure 7 and Figure 8 the calculated
thrust and torque are plotted for the initial
conditions.

Figure 7   Measured and Computed Values
of Thrust

Figure 8   Measured and Computed Values
of Torque

It can be shown that on a straight course a
parabolic relation between the thrust and
the forward speed exists, provided the
thrust curve of the propeller diagram is
linearised in the range of interest.
Consequently the assumption of a
parabolic relation between the longitudinal
resistance and the speed is equivalent to
the assumption of a speed-independent
thrust deduction fraction. This number was
estimated to be 0.20.
On this basis the resistance coefficient

*
RX  was calculated:

5* 100.54 −⋅−=RX



12

while for the effective thrust increment
coefficient '

TX  was found:
5' 100.25 −⋅−=TX

In Table 3 the computed rps, concerning
the various conditions, are summarised.

Table 3   Computed Propeller Rate Values

It is noted however that these data are
corrected for the differences between the
full-scale and model propeller (U 218 - B
5.60 respectively).
The rps values, adjusted during the model
tests, are not the same as given in Table 3,
however, as originally these values were
based on the full-scale relation between
thrust and speed as given by Clarke
(1965). During the analysis of the test data
this relation did not appear to correspond
with the full-scale data of rpm and the
propeller diagram, consequently nor did
the rpm-U relation. This is shown in
Figure 9.

Figure 9   Discrepancies between the
Measured Forward Speed and the Speed

Derived from Thrust and Torque
Measurements (Full-Scale)

From this figure it is assumed that the full-
scale speed measurements concerned are
not correct.

As, in addition, the coefficients, which
describe the balance between resistance
and thrust during a manoeuvre based on
this relation, resulted in very large
differences between the manoeuvres
computed and those executed on full-scale,
the linear relation between rpm and speed
was adopted.
The coefficients of the force and moment
components 2Y , 2N  and 2X  have been
corrected as far as necessary, which was
possible because their relation with the
rpm was known from the model
experiments.

3.4 Determination of Rudder Speed
UR

The quantity RU  has been derived from
the straight-line tests with constant rudder
angle. These tests were executed for the 10
combinations of speed and rps, while in
each case the rudder angle was varied from
36 degrees port to 36 degrees starboard
with steps of 9 degrees. A formal
description of the water velocity near the
rudder has been based on the impulse
theory with respect to the propeller.
According to this theory the water velocity
at a certain distance from the propeller
disk can be written as (see Figure 10):

'''
aeR CVU ⋅+= µ

Equation 5



13

Figure 10   Change of Water Velocity near
the Propeller

In both cases the prime denotes making it
non-dimensional with the initial speed 0U .
If the curves of the propeller torque and
thrust are linearised in the speed range of
interest the expression for '

aC  can be
written as follows:

2
12

2

'

'

11
Λ

+
Λ

+=





+ aa

V
C

e

a

Equation 6

where the coefficients 1a  and 2a  describe
the linearised torque and thrust.
Using the wake fraction ψ  (see chapter
3.2), the values of '

aC  can be calculated
for each of the 10 speed-rps combinations
given in . If these values are applied to
Equation 6, the unknown speed '

RU  is
replaced by the quantity µ , which
originally indicated the distance from the
propeller disk. It must be noted however
that in this case the deviations due to the
assumptions used culminate at the
computation of µ , so that this quantity
rather has to be considered a calculation
quantity than an indication for the distance
between rudder and propeller. The same is
to be applied to the quantity '

RU .
Substitution of the expression for '

RU  into
the formal description of the side force and
moment measurements at 0** == rv , for
each of the rudder angles applied, a value
of µ  was obtained. In Figure 11 the
products δµ ⋅  has been plotted versus the
rudder angle from which the optimal value
of 0.376 was derived.

Using this value of µ , the values of 2'
RU

were calculated and plotted in Figure 12
versus the relative speed loss 'u .

Figure 11   Experimental Determination of
Factor µ  from Equation 5

Figure 12   Linearisation of the Quantity
2'

RU

In Figure A 1 (Appendix A), for the 10
combinations of speed and rpm the
measured rudder forces and moments are
plotted on the basis of 2'

RU  while the
rudder angle is a parameter.
The values of aY  and aN  were too small to
distinguish between star and dash
components. A mean value, derived from
the swaying tests and the present tests is
obtained.
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Table 4   Static Sway Test Program

For the computation of the rudder
coefficients the measurements concerned
were corrected with these mean values.

3.5 Determination of Remaining
Coefficients

3.5.1 Static Sway Tests

These tests, executed at the 10
combinations of speed and rpm, provided
the coefficients of the following variables:
Y  and N  equation: *v , 3*v , 2*δv , δ2*v
X  equation: 2*v , δ*v
while also the aY  and aN  coefficients
were determined.

In Table 4 a scheme of the test program
concerned is given.
Using the test results at 0=δ  the
coefficients of *v , 3*v  and 2*v  are
determined while computing the 2*δv ,

2*vδ  and δ*v  coefficients; the coefficients
first mentioned were considered to be
known quantities.
In Figure A 2, Figure A 3 and Figure A 4,
the side force and moment measurements
concerned are plotted, while the
longitudinal force measurements are
shown in Figure A 12, Figure A 13 and
Figure A 14.
As no information was available involving
the influence of the rudder speed RU , the

dash coefficients concerned could not be
determined.

3.5.2 Oscillatory Swaying Tests

These tests were mainly executed to
determine the lateral added mass effect.
Only two initial speed conditions are
considered while the influence of a change
of rpm appeared negligible. Consequently

vY !  and vN !  are set to zero. The range in
which the non-dimensional acceleration

2/ xUvL !⋅  was changed; it was extended to
0.25 though an estimation of the maximum
full-scale value is about 0.15. Nevertheless
the measured force appeared linear with
the acceleration in the whole range.
In Figure A 5 the data concerned are
plotted where the speeds are considered
parameter.

3.5.3 Oscillatory Yawing Tests with
Constant Drift and Rudder
Angle

In general these tests were also executed
for the ten conditions given in Table 3.
The amplitude of the characteristic
variable *r  was varied between 0.05 and
0.70 corresponding with turning radii of
approximately 20 and 3 ship lengths
respectively.
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The choice of the oscillator frequency has
been based on the following
considerations:

a. Based on the tank width available and
the properties of the oscillator the non-
dimensional frequency gU x /⋅=ωγ ,
which is the leading factor determining
the oscillatory part of the wave pattern,
was kept as small as possible.
Concerning the influence of this
variable the reader is referred to Van
Leeuwen (1964).

b. The forces involved in the lowest
speed, corresponding with a Froude
number 0.07, had to be reasonably
measurable.

In order to judge the frequency range used
at these oscillatory motions, the quantity

*/2 ωπ  can be used, indicating the number
of ship lengths sailed during one period.
The restricted tank width and oscillator
amplitude involves a disagreement
between the forced motions of the model
and full-scale manoeuvres e.g. sinus-
response tests. These full-scale
manoeuvres involve rather large
amplitudes in the range of practical full-
scale frequencies. It is not known,
however, how far this discrepancy
between model-scale and full-scale
manoeuvres influences the hydrodynamic
derivatives. In the references Van
Leeuwen (1969a) and Van Leeuwen
(1969b) some more details concerning this
matter are discussed.

In Table 5 a scheme of the complete
yawing program is given.

Table 5   Yaw Test Program
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The measured forces and moments
concerning these tests are to be divided
into three components:
a. proportional to the angular velocity

(sine component)
b. proportional to the angular acceleration

(cosine component)
c. the constant component.
 In Table 6 the various components are
summarised while the variables concerned
are mentioned in the sequence of
determination.

Table 6   Variables and Components

Due to the criteria given in the preceding
chapter, concerning the ranges of oscillator
frequencies and amplitudes, the maximum
value of the angular acceleration amplitude
exceeds the corresponding value ever
occurring at the full-scale ship, the latter
being estimated about 1.30.
Consequently the coefficients concerned
have been determined in this full-scale
range the more so as outside this range the
model experiments showed a considerable
non-linear effect.
In Figure A 6 through Figure A 11 the side
force and moment measurements are
plotted, while in Figure A 14, Figure A 16
and Figure A 17 the corresponding
longitudinal force measurements are given.

3.6 Some Experiments with a Small
Model (α  = 100)

For comparison purpose the results of a
restricted number of tests with a small
model are given. These tests have been
executed before those with the larger
model. Because of the very low speeds

involved the results are considered not
very trustworthy.
The test program consisted of:
a. static sway tests
b. oscillatory swaying tests
c. oscillatory yawing tests (without

rudder angle and drift angle)
The influence of the speed reduction and
consequently of the thrust increment was
not examined in particular. It was assumed
that the hypothesis mentioned in Chapter
2.4 would hold. This means that the tests
only had to be executed for the initial
speed conditions.
In Table 7 the results of these tests are
summarised and are compared with those
of the large model. In Figure A 18 through
Figure A 27 the measurements are shown.

Table 7   Coefficients of Small Model
(1:100)

As follows from Table 7 for the important
coefficients, the magnitude of the
differences between the coefficients of the
large and the small model is about 10
percent while this percentage for the less
important coefficients is about 25.

Table 8   Comparison of 190 Starboard
Circle for Scale 1:100, 1:55 and 1:1
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The importance of these differences is
partly shown in Table 8 in which the
results of a turning circle manoeuvre are
given, computed with the 1:100 model
coefficients, completed with some of the
large model.
Concerning the range of variables applied
with this model it is noted that nearly the
same maximum values of rudder angle,
drift angle and angular velocity were
adjusted. The difference between the
frequency ranges of the two models is
expressed by the two quantities */2 ωπ ,
denoting the number of ship lengths
covered during one period of the
oscillation, and γ  which quantity governs
the wave pattern during the oscillatory
motion.
The first quantity varies from 3.0 at

10.0*
0 =r  to 1.1 at 50.0*

0 =r , which is
nearly the same range as is applied for the
large model. The maximum value of γ  at

50.0*
0 =r  (0.17) is about two times the

corresponding value of the large model
however. Nevertheless this value is
considered sufficiently low as to avoid
disturbing influences of this parameter.
Putting the results of the two models in the
light of the hypothesis, mentioned in
chapter 2.4, it appears that the hypothesis
holds for both models separately, but not if
comparing both models. As in both cases
the Froude numbers had the same values
the differences between the corresponding
coefficients can be traced to the small
Reynolds number of the small model.

3.7 Some Remarks Concerning
Computed Coefficients

It is found that the rpm effect on the linear
terms is very small, compared to the
magnitude of these terms. Concerning the
non-linear terms, it was not possible to
distinguish between the normal scatter of
the data and this rpm effect, due to the
restricted accuracy of the measurements
and the relatively small values of this non-

linear term. This does not apply to the pure
rudder angle dependant terms of course,
the change of which with rpm is
considerable.
Another important result is the usefulness
of the hypothesis, concerning the
proportionality of the forces with the
square of the instantaneous speed and the
characteristic variables *v  and *r . This is
clearly shown e.g. in Figure A 2, Figure A
3 and Figure A 6. Though it has also been
tried to distinguish between the results
concerning the four initial speeds by Van
Leeuwen (1969c), it follows from the
figures just mentioned that the differences,
which could be considered a Froude
number effect, are not significant however.

Table 9   Lateral Force Coefficients

Table 10   Yaw Moment Coefficients
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Table 11   Longitudinal Force Coefficients

In Table 9, Table 10 and Table 11 in the
left columns the coefficients of the set of
Equation 3 are given while in the right
columns the corresponding coefficients of
Equation 4 are summarised, the latter
being derived from the preceding ones.
This derivation is partly based on the
following approximations:

( )

'2'

'
'

'2'

632.0709.0

300.2837.0
1

1
400.1940.01

uU

u
u

uu

R ⋅+=

⋅−=
+

⋅+=+

The accuracy of these approximations is
shown in Figure 12, Figure 13 and Figure
14 in which these quantities are plotted.
Concerning the signs of the coefficients in
these tables the rule holds that all terms are
transported to the right hand sides of the
equations.

Figure 13   Linearisation of Speed
Dependent Factor ( )2'1 u+

Figure 14   Linearisation of Speed
Dependent Factor ( )'1/1 u+

4 Computer Programs

4.1 Least Squares Analysis of
Measured Data

This IBM 360/65 computer program
SBSL#M03 has been developed to
compute the coefficients of a fourth order
polynomial of four variables:

( ) ∑
=

⋅=
p

t

nmlk
t xxxxCxxxxF

1
43214321 ,,,

using the least square criterion. Herein is
70≤p  and 4≤+++ nmlk .

If some of the coefficients are already
known they can be given and the
corresponding terms are subtracted from
the measured value of the function. If the
distance between a measurement and the
computed value of the polynomial exceeds
two times the RMS value the data
concerned are dropped while the
coefficients are computed again. This
“data point selection procedure” primarily
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serves to locate measuring, writing or
typing errors. The factor 2 used in this
criterion has been found experimentally. In
statistics, usually a factor 3 is applied,
though it has been found that if the number
of measurement is relatively small even
large errors are not located in that case.
This data point selection procedure comes
into operation again, unless:

a. the number of selected data
exceeds ten percent of the total
number,

b. the RMS value is already smaller
than a boundary value given
beforehand.

In the next stage the maximum value of
each term is computed. If these maximum
contributions of a number of terms is

smaller than the boundary value just
mentioned the procedure is repeated,
though without the coefficient the
maximum contribution of which was the
smallest.
Also this “coefficients selection proce-
dure” is repeated until the contributions of
all terms remained are sufficient.
Further the standard deviation and the
correlation coefficient of each coefficient
are computed. The first quantity is plotted
in Figure 15 and Figure 16 concerning the
large and the small model respectively.

A later PC version of this computer
program can be found at the Internet:
http://www.shipmotions.nl.

Figure 15   Standard Deviations of Coefficients

Figure 16   Standard Deviation of Coefficients (Small Model 1:100)

http://www.shipmotions.nl/
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4.2 Solution of Differential
Equations

 In this computer program (IBM 360/65
program SBSL#M02) the differential
equations are solved for given time
depending rudder signals, where the

Runge-Kutta procedure is applied. Two
cases are considered. In the first the rudder
rate is constant or zero, while in the second
a sinusoidal rudder input can be given to
determine the frequency characteristics of
a ship.

Figure 17   Time Histories of Separate Terms of Side Force Equation of Turning Circle D2

Figure 18   Time Histories of Separate Terms of Moment Equation of Turning Circle D2
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Figure 19   Time Histories of Separate Terms of Longitudinal Force Equation of Turning
Circle D2

Figure 20   Time Histories of Stability Roots of Turning Circle D2

The output quantities can also be required
to obtain the input for the coefficients
program M03, to determine the
coefficients of a mathematical model with
a reduced number of coefficients. Further
for each step the value of each term of the
set of equations of motion is computed

which enables to get an insight in the
importance of the various components. An
illustration of this is given in Figure 17,
Figure 18 and Figure 19.
Another way to observe the process of a
manoeuvre is to linearise the equations of
motion at each step to the set:
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Using the coefficients of this set of
equations the stability of the system can be
observed. The time constants of the system
can be found from the roots of the set:
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An example of the change of these
constants, indicating the change of
stability, during a turning circle
manoeuvre, is given in Figure 20.
Concerning the time interval between two
steps of the computation, for all
manoeuvres ten steps per ship length,
based on the initial speed, was applied.
The time intervals following from this are
given in Table 12.

Table 12   Time Intervals Applied for
Computations

5 Comparison of Computed and
Full-Scale Manoeuvres

5.1 Turning Circles

The principal data of the turning circles are
summarised in Table 13.

Table 13   Turning Circle Data

The results of the computed turning circles
are shown in Figure B 1 through Figure B
4. As follows from these figures, the
(final) rates of turn are somewhat smaller
than the full-scale values though,
combined with the final speed, the turning
diameters agree very well however.
For comparison with the spiral manoeuvre
results some additional turning circles
have been computed. Only the final values
of the various quantities have been used to
obtain complete curves.
The computation of the 37 degrees port
rudder turning circle has been repeated
omitting certain coefficients, which
significance was very little, according to
the model tests. The results are shown in
Figure B 2. As appears from this figure
these coefficients have also little
importance in the mathematical model.

5.2 Zig-Zag Trials

In Table 14, the principal data of the zig-
zag trials are summarised. Concerning the
initial conditions, only the course ψ  was
considered while no other data were
available. The values of the rudder rate of
turn were derived from the data and
figures given by Clarke (1965).
The computed zig-zag manoeuvres are
plotted in Figure B 5 through Figure B 12
and compared with the full-scale
measurements. The overshoot angles are
somewhat smaller, but the mean
oscillation periods agree very well. These
two quantities are plotted in Figure 22.
Concerning the initial speed conditions of
these manoeuvres the adopted linear
relation: 0U  = 12.5 x rpm has been
applied, while the rpm values for both full-
scale trials and computations are the same.
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Table 14   Zig-Zag Trial Data

6 Final Remarks

To judge the result of the model
experiments discussed in this paper, Figure
21 and Figure 22 may serve in the first
place. They provide an overall picture of
the principal parameters of turning circle,
spiral and zig-zag trials:
•  Figure 21a, *

cr  against 0δ : relation

between turning circle diameter */2 cr )
and rudder angle.

•  Figure 21b, cU  against 0δ : final speed
reduction of turning circle manoeuvres.

•  Figure 22a, pt  against 0/1 U : relation
between oscillation periods of zig-zag
trials and initial speed.

•  Figure 22b, 0max /δψ  against 0/1 δ :
relation between overshoot angle and
nominal rudder angle.

From these figures, in which the computed
quantities are compared with those
measured during the full-scale trials, it
appears that it is possible to predict the
manoeuvring properties of the ship
concerned by means of oscillation tests
with reasonable accuracy. It must be noted
however that both full-scale data and
computed data have their uncertainties. In
particular this may be important if 00 , yx
plots are compared, because these plots are
obtained very indirectly.
Concerning the zig-zag trials it is found
that a little change of the “execution
course” has a relatively large effect on the
maximum course deviation and the
oscillation period. Finally we have to keep
in mind that the determination of the
manoeuvring properties of a ship via
horizontal oscillation tests is rather
indirect, at least while the motions of the
model during these tests are rather
unrealistic. From the four figures above
mentioned, it may then be concluded that
if scale effects play a role in the present
investigation their importance is not very
large and of the same magnitude as the
accuracy of both the full-scale and model-
scale measurements.
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Figure 21   Principal Results of Predicted Circles at 100 Nominal RPM

Figure 22   Principal results of Predicted Zig-Zag Tests

7 Recommendations

The mathematical description of the
manoeuvring properties is based on a
hypothesis, which describes the relation
between the forces acting on the ship and
the forward speed. The application of this
hypothesis is fully justified by the present
model experiments. This does not mean

however that all hydrodynamic effects,
which play a part in this mathematical
model, are really necessary for a sufficient
description of the horizontal motions.
Therefore, it might be interesting to find a
simple mathematical model, which
properties are not to give and accurate
description of the hydrodynamic
phenomena but rather of the motions.
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8 List of Symbols

m Mass of the ship
zzI Moment of inertia of the ship
ρ Density of water

00 , yx Co-ordinates in space bounded co-ordinate system
Y Lateral force, positive to starboard
N Moment around 0Z -axis, positive to the right
X Longitudinal force

vY! Added mass in lateral direction

rN ! Added moment of inertia

uX ! Added mass in longitudinal direction

3,2,12,1,2,1, ,, XNY aa Components of Y , N  and X  respectively

222 ,, XNY Components proportional to 2
RU

'
RX Thrust increment coefficient

*
RX Longitudinal resistance coefficient
*

1Y 




≈





= 22

1
22

1 2
1/

2
1/ LUYLUY xρρ

*
1N 
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= 32

1
32

1 2
1/

2
1/ LUNLUN xρρ

*
1X 





≈





= 22

1
22

1 2
1/

2
1/ LUXLUX xρρ

0U Initial speed
U , U! Instantaneous forward speed and acceleration (vector)

xU , xU! Instantaneous longitudinal speed and acceleration

RU Local velocity near the rudder
v , v! Sway (drift) velocity and acceleration
r , r! Yaw angular velocity and acceleration
δ Rudder angle
u Speed reduction: 0UUu x −=

*v ββ tan/sin/ −=≈−== xUvUv
*r xr UrLRLUrLdsd //// * ⋅≈≈⋅== ψ
*v! ** / dsdv=
*r! ** / dsdr=
ψ Heading angle
β Drift angle
φ Deviation angle

*φ! vr RLRLRLdsd //// * −=== φ
s Distance covered by the ship

*s Distance covered by the ship in ship lengths
R Radius of curvature
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vR Drift radius of curvature ( *// dsdRL v β= )

rR Yaw radius of curvature ( *// dsdRL r ψ= )
'm 35.0/ Lm ρ=
'

zzI 5L0.5 / ρzzI=
'v 0/Uv=
'r 0/UrL ⋅=
'u 0/Uu=
'v! 2

0/UvL !⋅=
'r! 2

0
2 /UrL !⋅=

'u! 2
0/UuL !⋅=

'
RU 0/UU R=
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10 Appendix A

Figure A 1   Lateral Force and Moment
due to a Rudder Deflection

Figure A 2   Lateral Sway Damping Force

Figure A 3   Lateral Sway Damping
Moment

Figure A 4   Rudder Angle – Drift Cross
Coupling Effect in Lateral Force and

Moment
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Figure A 5   Swaying Force and Moment
due to Lateral Mass

Figure A 6   Lateral Yaw Damping Force
and Moment

Figure A 7   Yaw Rate – Drift Cross
Coupling Effects in Lateral Force and

Moment

Figure A 8   Rudder Angle – Yaw Rate
( 2rδ ) Cross Coupling Effect in Lateral

Force and Moment
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Figure A 9   Yaw Rate – Rudder Angle
( 2δr ) Cross Coupling Effect in Lateral

Force and Moment

Figure A 10   Drift – Yaw Rate – Rudder
Angle Cross Coupling Effect in Lateral

Force and Moment

Figure A 11   Yawing Force and Moment
due to Moment of Inertia
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Figure A 12   Longitudinal Force due to a
Rudder Deflection

Figure A 13   Longitudinal Sway Damping
Force

Figure A 14   Longitudinal Yaw Damping
Force
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Figure A 15   Rudder Angle – Drift Cross
Coupling Effect in Longitudinal Force

Figure A 16   Rudder angle – Yaw Rate
Cross Coupling Effect in Longitudinal

Force

Figure A 17   Longitudinal Force due to
Centrifugal Acceleration

Figure A 18   Swaying Force due to
Lateral Mass (Small Model 1:100)

Figure A 19   Swaying Moment due to
Lateral Mass (Small Model 1:100)

Figure A 20   Yawing Force due to
Moment of Inertia (Small Model 1:100)

Figure A 21   Yawing Moment due to
Moment of Inertia (Small Model 1:100)
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Figure A 22   Lateral Force due to Rudder
deflection (Small Model 1:100)

Figure A 23   Lateral Moment due to
Rudder Deflection (Small Model 1:100)

Figure A 24   Lateral sway Damping Force
(Small Model 1:100)

Figure A 25   Lateral Sway Damping
Moment (Small Model 1:100)

Figure A 26   Lateral Yaw Damping Force
(Small Model 1:100)

Figure A 27   Lateral Yaw Damping
Moment (Small Model 1:100)
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11 Appendix B

Figure B 1   Time Histories and X-Y Plot
of Turning Circle A at 340 to Starboard

and 100 Nominal RPM
Figure B 2    Time Histories and X-Y Plot
of Turning Circle B at 370 to Port and 100

Nominal RPM
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Figure B 3    Time Histories and X-Y Plot
of Turning Circle D2 at 190 to Starboard

and 100 Nominal RPM
Figure B 4   Turning Circle Characteristics

at 100 Nominal RPM
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Figure B 5   Time Histories and X-Y Plot
of Zig-Zag Test A (20/20) at 100 Nominal

RPM

Figure B 6   Time Histories and X-Y Plot
of Zig-Zag Test C (10/20) at 100 Nominal

RPM
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Figure B 7   Time Histories and X-Y Plot
of Zig-Zag Test D (30/20) at 100 Nominal

RPM

Figure B 8    Time Histories and X-Y Plot
of Zig-Zag Test E (10/20) at 85 Nominal

RPM
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Figure B 9   Time Histories and X-Y Plot
of Zig-Zag Test F (20/20) at 85 Nominal

RPM

Figure B 10   Time Histories and X-Y Plot
of Zig-Zag Test A (30/20) at 85 Nominal

RPM
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Figure B 11   Time Histories and X-Y Plot
of Zig-Zag Test J (20/20) at 70 Nominal

RPM

Figure B 12   Time Histories and X-Y Plot
of Zig-Zag Test L (30/20) at 60 Nominal

RPM
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